Phase diagram and critical exponents of a Potts gauge glass.

نویسندگان

  • Jesper Lykke Jacobsen
  • Marco Picco
چکیده

The two-dimensional q-state Potts model is subjected to a Z(q) symmetric disorder that allows for the existence of a Nishimori line. At q=2, this model coincides with the +/- J random-bond Ising model. For q>2, apart from the usual pure- and zero-temperature fixed points, the ferro/paramagnetic phase boundary is controlled by two critical fixed points: a weak disorder point, whose universality class is that of the ferromagnetic bond-disordered Potts model, and a strong disorder point which generalizes the usual Nishimori point. We numerically study the case q=3, tracing out the phase diagram and precisely determining the critical exponents. The universality class of the Nishimori point is inconsistent with percolation on Potts clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 F eb 2 00 1 The Anisotropic Ashkin - Teller Model : a Renormalization Group Study

The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice. The correlation length (ν T) and crossover (φ) critical exponents are also calculated. With the only exception of the four-state Potts critical p...

متن کامل

The arboreal gas and the supersphere sigma model

We discuss the relationship between the phase diagram of the Q = 0 state Potts model, the arboreal gas model, and the supersphere sigma model S = OSP (1/2)/OSP (0/2). We identify the Potts antiferromagnetic critical point with the critical point of the arboreal gas (at negative tree fugacity), and with a critical point of the sigma model. We show that the corresponding conformal theory on the s...

متن کامل

Thermal critical behavior and universality aspects of the three-dimensional random-field Ising model

The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete (±∆) distribution, and we study the model for v...

متن کامل

Potts fully frustrated model: thermodynamics, percolation, and dynamics in two dimensions

We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore, this transition can...

متن کامل

Possibly Exact Solution for the Multicritical Point of Finite-dimensional Spin Glasses

After briefly describing the present status of the spin glass theory, we present a conjecture on the exact location of the multicritical point in the phase diagram of finite-dimensional spin glasses. The theory enables us to understand in a unified way many numerical results for two-, threeand four-dimensional models including the ±J Ising model, random Potts model, random lattice gauge theory,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002